• Comput Methods Programs Biomed · Mar 2011

    Impact of aortic repair based on flow field computer simulation within the thoracic aorta.

    • Nenad Filipovic, Danko Milasinovic, Nebojsa Zdravkovic, Dittmar Böckler, and Hendrik von Tengg-Kobligk.
    • Faculty of Mechanical Engineering, University of Kragujevac, S. Janjica 6, Kragujevac, Serbia. fica@kg.ac.rs
    • Comput Methods Programs Biomed. 2011 Mar 1; 101 (3): 243-52.

    AbstractPurpose of this computational study is to examine the hemodynamic parameters of velocity fields and shear stress in the thoracic aorta with and without aneurysm, based on an individual patient case and virtual surgical intervention. These two cases, case I (with aneurysm) and II (without aneurysm), are analyzed by computational fluid dynamics. The 3D Navier-Stokes equations and the continuity equation are solved with an unsteady stabilized finite element method. The vascular geometries are reconstructed based on computed tomography angiography images to generate a patient-specific 3D finite element mesh. The input data for the flow waveforms are derived from MR phase contrast flow measurements of a patient before surgical intervention. The computed results show velocity profiles skewed towards the inner aortic wall for both cases in the ascending aorta and in the aortic arch, while in the descending aorta these velocity profiles are skewed towards the outer aortic wall. Computed streamlines indicate that flow separation occurs at the proximal edge of the aneurysm, i.e. computed flow enters the aneurysm in the distal region, and that there is essentially a single, slowly rotating, vortex within the aneurysm during most of the systole. In summary, after virtual surgical intervention in case II higher shear stress distribution along the descending aorta could be found, which may produce more healthy reactions in the endothelium and benefit of vascular reconstruction of an aortic aneurysm at this particular location.Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.