• J. Med. Virol. · Apr 2021

    The antibody response to the glycan α-Gal correlates with COVID-19 disease symptoms.

    • José Miguel Urra, Elisa Ferreras-Colino, Marinela Contreras, Carmen M Cabrera, Isabel G Fernández de Mera, Margarita Villar, Alejandro Cabezas-Cruz, Christian Gortázar, and José de la Fuente.
    • Immunology, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain.
    • J. Med. Virol. 2021 Apr 1; 93 (4): 2065-2075.

    AbstractThe coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide. Characterization of the immunological mechanisms involved in disease symptomatology and protective response is important to progress in disease control and prevention. Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal), which resulted in the development of a protective response against pathogenic viruses and other microorganisms containing this modification on membrane proteins mediated by anti-α-Gal immunoglobulin M (IgM)/IgG antibodies produced in response to bacterial microbiota. In addition to anti-α-Gal antibody-mediated pathogen opsonization, this glycan induces various immune mechanisms that have shown protection in animal models against infectious diseases without inflammatory responses. In this study, we hypothesized that the immune response to α-Gal may contribute to the control of COVID-19. To address this hypothesis, we characterized the antibody response to α-Gal in patients at different stages of COVID-19 and in comparison with healthy control individuals. The results showed that while the inflammatory response and the anti-SARS-CoV-2 (Spike) IgG antibody titers increased, reduction in anti-α-Gal IgE, IgM, and IgG antibody titers and alteration of anti-α-Gal antibody isotype composition correlated with COVID-19 severity. The results suggested that the inhibition of the α-Gal-induced immune response may translate into more aggressive viremia and severe disease inflammatory symptoms. These results support the proposal of developing interventions such as probiotics based on commensal bacteria with α-Gal epitopes to modify the microbiota and increase α-Gal-induced protective immune response and reduce severity of COVID-19.© 2020 Wiley Periodicals LLC.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…