-
J Aerosol Med Pulm Drug Deliv · Jun 2019
High-Efficiency Nose-to-Lung Aerosol Delivery in an Infant: Development of a Validated Computational Fluid Dynamics Method.
- Karl Bass, Susan Boc, Michael Hindle, Kelley Dodson, and Worth Longest.
- 1 Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia.
- J Aerosol Med Pulm Drug Deliv. 2019 Jun 1; 32 (3): 132-148.
Abstract Background: Computational fluid dynamics (CFD) provides a powerful tool for developing new high-efficiency aerosol delivery strategies, such as nose-to-lung (N2L) aerosol administration to infants and children using correctly sized aerosols. The objective of this study was to establish numerically efficient CFD solution methods and guidelines for simulating N2L aerosol administration to an infant based on comparisons with concurrent in vitro experiments. Materials and Methods: N2L administration of a micrometer-sized aerosol (mass median aerodynamic diameter [MMAD] = 1.4 μm) was evaluated using concurrent CFD simulations and in vitro experiments. Aerosol transport and deposition was assessed in a new nasal airway geometry of a 6-month-old infant with a streamlined nasal cannula interface, which was constructed as a CFD mesh and three-dimensionally printed to form an identical physical prototype. CFD meshes explored were a conventional tetrahedral approach with near-wall (NW) prism elements and a new polyhedral mesh style with an equally refined NW layer. The presence of turbulence in the model was evaluated using a highly efficient low-Reynolds number (LRN) k-ω turbulence model, with previously established NW corrections that accounted for anisotropic wall-normal turbulence as well as improved NW velocity interpolations and hydrodynamic particle damping. Results: Use of the new polyhedral mesh was found to improve numerical efficiency by providing more rapid convergence and requiring fewer control volumes. Turbulent flow was found in the nasal geometry, generated by the inlet jets from the nasal cannula interface. However, due to the small particle size, turbulent dispersion was shown to have little effect on deposition. Good agreement was established between the CFD predictions using the numerically efficient LRN k-ω model with appropriate NW corrections and in vitro deposition data. Aerosol transmission efficiencies through the delivery tube, nasal cannula, and infant nasal model, based on experimental and CFD predictions, were 93.0% and 91.5%, respectively. Conclusions: A numerically efficient CFD approach was established to develop transnasal aerosol administration to infants and children. Small particle aerosols with aerodynamic diameters of ∼1.5 μm were confirmed to have low inertial depositional loss, and have low deposition from turbulent dispersion, making them ideal for high-efficiency lung delivery through an infant nasal cannula interface.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.