Journal of aerosol medicine and pulmonary drug delivery
-
J Aerosol Med Pulm Drug Deliv · Jun 2019
High-Efficiency Nose-to-Lung Aerosol Delivery in an Infant: Development of a Validated Computational Fluid Dynamics Method.
Background: Computational fluid dynamics (CFD) provides a powerful tool for developing new high-efficiency aerosol delivery strategies, such as nose-to-lung (N2L) aerosol administration to infants and children using correctly sized aerosols. The objective of this study was to establish numerically efficient CFD solution methods and guidelines for simulating N2L aerosol administration to an infant based on comparisons with concurrent in vitro experiments. Materials and Methods: N2L administration of a micrometer-sized aerosol (mass median aerodynamic diameter [MMAD] = 1.4 μm) was evaluated using concurrent CFD simulations and in vitro experiments. Aerosol transport and deposition was assessed in a new nasal airway geometry of a 6-month-old infant with a streamlined nasal cannula interface, which was constructed as a CFD mesh and three-dimensionally printed to form an identical physical prototype. ⋯ Good agreement was established between the CFD predictions using the numerically efficient LRN k-ω model with appropriate NW corrections and in vitro deposition data. Aerosol transmission efficiencies through the delivery tube, nasal cannula, and infant nasal model, based on experimental and CFD predictions, were 93.0% and 91.5%, respectively. Conclusions: A numerically efficient CFD approach was established to develop transnasal aerosol administration to infants and children. Small particle aerosols with aerodynamic diameters of ∼1.5 μm were confirmed to have low inertial depositional loss, and have low deposition from turbulent dispersion, making them ideal for high-efficiency lung delivery through an infant nasal cannula interface.