• Spine · Apr 2013

    Responding to neuromonitoring changes in 3-column posterior spinal osteotomies for rigid pediatric spinal deformities.

    • James G Jarvis, Samuel Strantzas, Marc Lipkus, Laura M Holmes, Taylor Dear, Sofia Magana, David E Lebel, and Stephen J Lewis.
    • Division of Orthopaedic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada.
    • Spine. 2013 Apr 15;38(8):E493-503.

    Study DesignRetrospective review of prospectively collected data on the neuromonitoring changes recorded during a consecutive series of cord level 3-column posterior spinal osteotomies for the correction of rigid pediatric spinal deformities in children between 2005 and 2012.ObjectiveTo review the neuromonitoring changes observed during the performance of these procedures, to highlight the high-risk steps, and to describe actions taken to avert major neurological injury.Summary Of Background DataSignificant motor evoked potentials (MEP) changes are common during the performance of spinal osteotomies in children. The real-time intraoperative information provided by MEPs can provide the necessary information to direct key surgical decisions.MethodsThe neuromonitoring changes occurring during the performance of 37 3-column, cord level, posterior spinal osteotomies in 28 patients were recorded. The procedures were divided, for comparative purposes, into 2 groups based on the presence or absence of alerts. A decrease in somatosensory evoked potentials and transcranial MEPs greater than 50% of baseline was considered an alert. Alerts were classified chronologically as type I: prior to decompression, type II: occurring during decompression and bone resection, type III: occurring after osteotomy closure.ResultsSomatosensory evoked potential alerts occurred in 3 patients, all of whom had significant MEP alerts. There were 2 type I, 15 type II, and 6 type III MEP alerts. Increasing blood pressure improved MEPs in all with the exception of 8 type II and 4 type III. The unresponsive 8 type II alerts were treated with osteotomy closure with the expectation that spinal shortening would decompress the spinal cord and improve spinal cord perfusion. The unresponsive 4 type III alerts all responded to reopening, manipulation, and subsequent reclosure of the osteotomy either with a cage or less correction. There were 5 immediate postoperative motor deficits. No patient had a permanent deficit.ConclusionChanges unresponsive to increasing blood pressure occurring during decompression and bone resection (type II) responded well to osteotomy closure. Unresponsive changes during osteotomy closure (type III) were treated successfully with opening the osteotomy, cage adjustment, and less correction.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…