• AJR Am J Roentgenol · Nov 2020

    Artificial Intelligence Predictive Analytics in the Management of Outpatient MRI Appointment No-Shows.

    • Chong Le Roy LR Department of Radiology, Changi General Hospital, 2 Simei St 3, Singapore 529889, Republic of Singapore., Koh Tzan Tsai, Lee Lian Lee, Seck Guan Foo, and Piek Chim Chang.
    • Department of Radiology, Changi General Hospital, 2 Simei St 3, Singapore 529889, Republic of Singapore.
    • AJR Am J Roentgenol. 2020 Nov 1; 215 (5): 1155-1162.

    AbstractOBJECTIVE. Outpatient appointment no-shows are a common problem. Artificial intelligence predictive analytics can potentially facilitate targeted interventions to improve efficiency. We describe a quality improvement project that uses machine learning techniques to predict and reduce outpatient MRI appointment no-shows. MATERIALS AND METHODS. Anonymized records from 32,957 outpatient MRI appointments between 2016 and 2018 were acquired for model training and validation along with a holdout test set of 1080 records from January 2019. The overall no-show rate was 17.4%. A predictive model developed with XGBoost, a decision tree-based ensemble machine learning algorithm that uses a gradient boosting framework, was deployed after various machine learning algorithms were evaluated. The simple intervention measure of using telephone call reminders for patients with the top 25% highest risk of an appointment no-show as predicted by the model was implemented over 6 months. RESULTS. The ROC AUC for the predictive model was 0.746 with an optimized F1 score of 0.708; at this threshold, the precision and recall were 0.606 and 0.852, respectively. The AUC for the holdout test set was 0.738 with an optimized F1 score of 0.721; at this threshold, the precision and recall were 0.605 and 0.893, respectively. The no-show rate 6 months after deployment of the predictive model was 15.9% compared with 19.3% in the preceding 12-month preintervention period, corresponding to a 17.2% improvement from the baseline no-show rate (p < 0.0001). The no-show rates of contactable and noncontactable patients in the group at high risk of appointment no-shows as predicted by the model were 17.5% and 40.3%, respectively (p < 0.0001). CONCLUSION. Machine learning predictive analytics perform moderately well in predicting complex problems involving human behavior using a modest amount of data with basic feature engineering, and they can be incorporated into routine workflow to improve health care delivery.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.