-
Comparative Study
Histogram analysis in prostate cancer: a comparison of diffusion kurtosis imaging model versus monoexponential model.
- Yuwei Jiang, Chunmei Li, Ying Liu, Kaining Shi, Wei Zhang, Ming Liu, and Min Chen.
- Peking University Fifth School of Clinical Medicine, Beijing, China.
- Acta Radiol. 2020 Oct 1; 61 (10): 1431-1440.
BackgroundThere is still little research about histogram analysis of diffusion kurtosis imaging (DKI) using in prostate cancer at present.PurposeTo verify the utility of histogram analysis of DKI model in detection and assessment of aggressiveness of prostate cancer, compared with monoexponential model (MEM).Material And MethodsTwenty-three patients were enrolled in this study. For DKI model and MEM, the Dapp, Kapp, and apparent diffusion coefficient (ADC) were obtained by using single-shot echo-planar imaging sequence. The pathologies were confirmed by in-bore magnetic resonance (MR)-guided biopsy. Regions of interest (ROI) were drawn manually in the position where biopsy needle was put. The mean values and histogram parameters in cancer and noncancerous foci were compared using independent-samples T test. Receiver operating characteristic curves were used to investigate the diagnostic efficiency. Spearman's test was used to evaluate the correlation of parameters and Gleason scores.ResultsThe mean, 10th, 25th, 50th, 75th, and 90th percentiles of ADC and Dapp were significantly lower in prostate cancer than non-cancerous foci (P < 0.001). The mean, 50th, 75th, and 90th percentiles of Kapp were significantly higher in prostate cancer (P < 0.05). There was no significant difference between the AUCs of two models (0.971 vs. 0.963, P > 0.05). With the increasing Gleason scores, the 10th ADC decreased (ρ = -0.583, P = 0.018), but the 90th Kapp increased (ρ = 0.642, P = 0.007).ConclusionHistogram analysis of DKI model is feasible for diagnosing and grading prostate cancer, but it has no significant advantage over MEM.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.