• NMR in biomedicine · Nov 2010

    Improvement of resolution for brain coupled metabolites by optimized (1)H MRS at 7T.

    • Changho Choi, Ivan E Dimitrov, Deborah Douglas, Aditya Patel, Lana G Kaiser, Carlos A Amezcua, and Elizabeth A Maher.
    • Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. changho.choi@utsouthwestern.edu
    • NMR Biomed. 2010 Nov 1; 23 (9): 1044-52.

    AbstractResolution enhancement for glutamate (Glu), glutamine (Gln) and glutathione (GSH) in the human brain by TE-optimized point-resolved spectroscopy (PRESS) at 7 T is reported. Sub-TE dependences of the multiplets of Glu, Gln, GSH, γ-aminobutyric acid (GABA) and N-acetylaspartate (NAA) at 2.2-2.6 ppm were investigated with density matrix simulations, incorporating three-dimensional volume localization. The numerical simulations indicated that the C4-proton multiplets can be completely separated with (TE(1), TE(2)) = (37, 63) ms, as a result of a narrowing of the multiplets and suppression of the NAA 2.5 ppm signal. Phantom experiments reproduced the signal yield and lineshape from simulations within experimental errors. In vivo tests of optimized PRESS were conducted on the prefrontal cortex of six healthy volunteers. In spectral fitting by LCModel, Cramér-Rao lower bounds (CRLBs) of Glu, Gln and GSH were 2 ± 1, 5 ± 1 and 6 ± 2 (mean ± SD), respectively. To evaluate the performance of the optimized PRESS method under identical experimental conditions, stimulated-echo spectra were acquired with (TE, TM) = (14, 37) and (74, 68) ms. The CRLB of Glu was similar between PRESS and short-TE stimulated-echo acquisition mode (STEAM), but the CRLBs of Gln and GSH were lower in PRESS than in both STEAM acquisitions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…