-
- Anran Jiao, Bing Yu, Jun He, Jie Yu, Ping Zheng, Yuheng Luo, Junqiu Luo, Hui Yan, Quyuan Wang, Huifen Wang, Xiangbing Mao, and Daiwen Chen.
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Ya'an, Sichuan Province, China.
- Nutrition. 2021 Jul 1; 87-88: 111198.
ObjectivesAcetate, propionate, and butyrate, three of the most common short-chain fatty acids (SCFAs), can be produced when some non-digestible carbohydrates enter the large intestine and undergo bacterial fermentation. The aim of this study was to investigate the effects of these three SCFAs on appetite regulation and lipid metabolism and to determine the extent that appetite contributes to the beneficial influences of SCFAs.MethodsIn a 35-d study, 48 C57BL/6J male mice were randomly allocated to six groups: control; 5% sodium acetate; 5% sodium propionate; 5% sodium butyrate; pair fed 1; and pair fed 2.ResultsThe study showed that dietary supplementation of sodium acetate reduced serum triacylglycerol, free fatty acids, glucose, and interleukin (IL)-6 levels (P < 0.05), increased serum glucagon-like peptide 1, and leptin levels (P < 0.05), downregulated the mRNA expressions of fatty acid synthase, peroxisome proliferator-activated receptor, and lipoprotein lipase (P < 0.05), and upregulated the mRNA expressions of fasting-induced adipose factor, nuclear respiratory factor 1, mitochondrial transcription factor A, tumor necrosis factor receptor superfamily member 9, cytochrome-C oxidase IV and free fatty acid receptor 2 (P < 0.05). Sodium propionate also reduced serum IL-1β level (P < 0.05), increased serum peptide YY level (P < 0.05), downregulated the mRNA expressions of acetyl-coenzyme A carboxylase and sterol regulatory element-binding protein 1c (P < 0.05), and upregulated the mRNA expression of transmembrane protein 26 (P < 0.05). Additionally, sodium butyrate decreased average daily feed intake (P < 0.05) downregulated the mRNA expression of myosin heavy-chain (MyHc) Ⅱb (P < 0.05), and upregulated the mRNA expressions of lipase hormone-sensitive, MyHC Ⅱa and carnitine palmitoyltransferase-1α (P < 0.05). Moreover, the metabolic benefits of SCFAs were partly attributed to the reduction of feed intake.ConclusionTaken together, SCFAs could reduce appetite and fat accumulation via modulating relevant genes and hormones, which might further illustrate the potential mechanisms that underlay the effects of SCFAs on lipid homeostasis and control of body weight.Copyright © 2021 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.