• Preventive medicine · Jul 2021

    Review Meta Analysis

    Personalized mobile technologies for lifestyle behavior change: A systematic review, meta-analysis, and meta-regression.

    • Huong Ly Tong, Juan C Quiroz, A Baki Kocaballi, FatSandrine Chan MoiSCMDepartment of Biomedical Science, Macquarie University, Sydney, Australia., Kim Phuong Dao, Holly Gehringer, Clara K Chow, and Liliana Laranjo.
    • Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia. Electronic address: hton5658@uni.sydney.edu.au.
    • Prev Med. 2021 Jul 1; 148: 106532.

    AbstractGiven that the one-size-fits-all approach to mobile health interventions have limited effects, a personalized approach might be necessary to promote healthy behaviors and prevent chronic conditions. Our systematic review aims to evaluate the effectiveness of personalized mobile interventions on lifestyle behaviors (i.e., physical activity, diet, smoking and alcohol consumption), and identify the effective key features of such interventions. We included any experimental trials that tested a personalized mobile app or fitness tracker and reported any lifestyle behavior measures. We conducted a narrative synthesis for all studies, and a meta-analysis of randomized controlled trials. Thirty-nine articles describing 31 interventions were included (n = 77,243, 64% women). All interventions personalized content and rarely personalized other features. Source of data included system-captured (12 interventions), user-reported (11 interventions) or both (8 interventions). The meta-analysis showed a moderate positive effect on lifestyle behavior outcomes (standardized difference in means [SDM] 0.663, 95% CI 0.228 to 1.10). A meta-regression model including source of data found that interventions that used system-captured data for personalization were associated with higher effectiveness than those that used user-reported data (SDM 1.48, 95% CI 0.76 to 2.19). In summary, the field is in its infancy, with preliminary evidence of the potential efficacy of personalization in improving lifestyle behaviors. Source of data for personalization might be important in determining intervention effectiveness. To fully exploit the potential of personalization, future high-quality studies should investigate the integration of multiple data from different sources and include personalized features other than content.Copyright © 2021 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…