-
- Angela D Melnyk, Tian Lin Wen, Stephen Kingwell, Jason D Chak, Vaneet Singh, Peter A Cripton, Charles G Fisher, Marcel F Dvorak, and Thomas R Oxland.
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
- Spine. 2012 Aug 15;37(18):E1126-33.
Study DesignA biomechanical human cadaveric study.ObjectiveTo determine the percentage of shear force supported by posterior lumbar spinal devices of varying stiffnesses under anterior shear loading in a degenerative spondylolisthesis model.Summary Of Background DataClinical studies have demonstrated beneficial results of posterior arthrodesis for the treatment of degenerative spinal conditions with instability. Novel spinal implants are designed to correct and maintain spinal alignment, share load with the spine, and minimize adjacent level stresses. The optimal stiffness of these spinal systems is unknown. To our knowledge, low-stiffness posterior instrumentation has not been tested under an anterior shear force, a highly relevant force to be neutralized in the clinical case of degenerative spondylolisthesis.MethodsThe effects of implant stiffness and specimen condition on implant load and intervertebral motion were assessed in a biomechanical study. Fifteen human cadaveric lumbar functional spinal units were tested under a static 300 N axial compression force and a cyclic anterior shear force (5-250 N). Implants (high-stiffness [HSI]: ø 5.5-mm titanium, medium-stiffness [MSI]: ø 6.35 × 7.2-mm oblong PEEK, and low-stiffness [LSI]: ø 5.5-mm round PEEK) instrumented with strain gauges were used to calculate loads and were tested in each of 3 specimen conditions simulating degenerative changes: intact, facet instability, and disc instability. Intervertebral motions were measured with a motion capture system.ResultsAs predicted, implants supported a significantly greater shear force as the specimen was progressively destabilized. Mean implant loads as a percent of the applied shear force in order of increasing specimen destabilization for the HSI were 43%, 67%, and 76%; mean implant loads for the MSI were 32%, 56%, and 77%; and mean implant loads for the LSI were 18%, 35%, and 50%. Anterior translations increased with decreasing implant stiffness and increasing specimen destabilization.ConclusionImplant shear stiffness significantly affected the load sharing between the implant and the natural spine in anterior shear ex vivo. Low-stiffness implants transferred significantly greater loads to the spine. This study supports the importance of load-sharing behavior when designing new implants.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.