• Chinese medical journal · Feb 2021

    Establishment and clinical application value of an automatic diagnosis platform for rectal cancer T-staging based on a deep neural network.

    • Qing-Yao Wu, Shang-Long Liu, Pin Sun, Ying Li, Guang-Wei Liu, Shi-Song Liu, Ji-Lin Hu, Tian-Ye Niu, and Yun Lu.
    • Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
    • Chin. Med. J. 2021 Feb 25; 134 (7): 821828821-828.

    BackgroundColorectal cancer is harmful to the patient's life. The treatment of patients is determined by accurate preoperative staging. Magnetic resonance imaging (MRI) played an important role in the preoperative examination of patients with rectal cancer, and artificial intelligence (AI) in the learning of images made significant achievements in recent years. Introducing AI into MRI recognition, a stable platform for image recognition and judgment can be established in a short period. This study aimed to establish an automatic diagnostic platform for predicting preoperative T staging of rectal cancer through a deep neural network.MethodsA total of 183 rectal cancer patients' data were collected retrospectively as research objects. Faster region-based convolutional neural networks (Faster R-CNN) were used to build the platform. And the platform was evaluated according to the receiver operating characteristic (ROC) curve.ResultsAn automatic diagnosis platform for T staging of rectal cancer was established through the study of MRI. The areas under the ROC curve (AUC) were 0.99 in the horizontal plane, 0.97 in the sagittal plane, and 0.98 in the coronal plane. In the horizontal plane, the AUC of T1 stage was 1, AUC of T2 stage was 1, AUC of T3 stage was 1, AUC of T4 stage was 1. In the coronal plane, AUC of T1 stage was 0.96, AUC of T2 stage was 0.97, AUC of T3 stage was 0.97, AUC of T4 stage was 0.97. In the sagittal plane, AUC of T1 stage was 0.95, AUC of T2 stage was 0.99, AUC of T3 stage was 0.96, and AUC of T4 stage was 1.00.ConclusionFaster R-CNN AI might be an effective and objective method to build the platform for predicting rectal cancer T-staging.Trial Registrationchictr.org.cn: ChiCTR1900023575; http://www.chictr.org.cn/showproj.aspx?proj=39665.Copyright © 2021 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…