-
NeuroImage. Clinical · Jan 2019
White matter microstructural differences identified using multi-shell diffusion imaging in six-year-old children born very preterm.
- Julia M Young, Marlee M Vandewouw, Sarah I Mossad, Benjamin R Morgan, Wayne Lee, Mary Lou Smith, John G Sled, and Margot J Taylor.
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada. Electronic address: julia.young@mail.utoronto.ca.
- Neuroimage Clin. 2019 Jan 1; 23: 101855.
IntroductionThe underlying microstructural properties of white matter differences in children born very preterm (<32 weeks gestational age) can be investigated in depth using multi-shell diffusion imaging. The present study compared white matter across the whole brain using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) metrics in children born very preterm and full-term children at six years of age. We also investigated associations between white matter microstructure with early brain injury and developmental outcomes.MethodMulti-shell diffusion imaging, T1-weighted anatomical MR images and developmental assessments were acquired in 23 children born very preterm (16 males; mean scan age: 6.57 ± 0.34 years) and 24 full-term controls (10 males, mean scan age: 6.62 ± 0.37 years). DTI metrics were obtained and neurite orientation dispersion index (ODI) and density index (NDI) were estimated using the NODDI diffusion model. FSL's tract-based spatial statistics were performed on traditional DTI metrics and NODDI metrics. Voxel-wise comparisons were performed to test between-group differences and within-group associations with developmental outcomes (intelligence and visual motor abilities) as well as early white matter injury and germinal matrix/intraventricular haemorrhage (GMH/IVH).ResultsIn comparison to term-born children, the children born very preterm exhibited lower fractional anisotropy (FA) across many white matter regions as well as higher mean diffusivity (MD), radial diffusivity (RD), and ODI. Within-group analyses of the children born very preterm revealed associations between higher FA and NDI with higher IQ and VMI. Lower ODI was found within the corona radiata in those with a history of white matter injury. Within the full-term group, associations were found between higher NDI and ODI with lower IQ.ConclusionChildren born very preterm exhibit lower FA and higher ODI than full-term children. NODDI metrics provide more biologically specific information beyond DTI metrics as well as additional information of the impact of prematurity and white matter microstructure on cognitive outcomes at six years of age.Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.