-
- Kevin Otto and Justin Williams.
- Department of Biological Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA. kotto@purdue.edu
- IEEE Pulse. 2012 Jan 1; 3 (1): 27-9.
AbstractNeural implantation of devices and the subsequent tissue response are complex and cascading physical and biological phenomena. Creation of reliable neural interfaces remains a significant challenge. Penetrating central nervous system interfaces persist as the most challenging to realize but continue to be the most attractive because of the information bandwidth advantages they provide. This rich information source is essential for achieving next-generation prosthetic control. Specific challenges of penetrating central nervous system interfaces arise because of the reactive tissue response to the initial injury due to device insertion as well as the continued response due to device indwelling. These responses consist of biochemical signaling events, microglial activation, and astrogliotic cell reorganization that result in biophysical changes of the tissue near the implanted device and finally, electrophysiological neural cell/signal loss (Figure 1). The ultimate realization of reliable penetrating neural interfaces will require careful science and engineering approaches incorporating knowledge of relevant and critical biological, physical, and chemical factors, especially their interrelationship. In this article, we describe a comprehensive strategy to assess the reliability of penetrating central neural interfaces based on the biology and pathology of the injury and indwelling tissue responses. Our strategy involves a parallel, self-informing approach by simultaneous development of new in vitro and in vivo assessment techniques as well as using these state-of-the-art techniques to conduct accelerated lifetime assessments of neural interface degradation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.