• Transl Res · Aug 2021

    Review

    Methodological approaches for the prediction of opioid use-related epidemics in the United States: a narrative review and cross-disciplinary call to action.

    • Charles Marks, Gabriel Carrasco-Escobar, Rocío Carrasco-Hernández, Derek Johnson, Dan Ciccarone, Steffanie A Strathdee, Davey Smith, and Annick Bórquez.
    • Interdisciplinary Research on Substance Use Joint Doctoral Program at San Diego State University and University of California, San Diego; Division of Infectious Diseases and Global Public Health, University of California, San Diego; School of Social Work, San Diego State University.
    • Transl Res. 2021 Aug 1; 234: 8811388-113.

    AbstractThe opioid crisis in the United States has been defined by waves of drug- and locality-specific Opioid use-Related Epidemics (OREs) of overdose and bloodborne infections, among a range of health harms. The ability to identify localities at risk of such OREs, and better yet, to predict which ones will experience them, holds the potential to mitigate further morbidity and mortality. This narrative review was conducted to identify and describe quantitative approaches aimed at the "risk assessment," "detection" or "prediction" of OREs in the United States. We implemented a PubMed search composed of the: (1) objective (eg, prediction), (2) epidemiologic outcome (eg, outbreak), (3) underlying cause (ie, opioid use), (4) health outcome (eg, overdose, HIV), (5) location (ie, US). In total, 46 studies were included, and the following information extracted: discipline, objective, health outcome, drug/substance type, geographic region/unit of analysis, and data sources. Studies identified relied on clinical, epidemiological, behavioral and drug markets surveillance and applied a range of methods including statistical regression, geospatial analyses, dynamic modeling, phylogenetic analyses and machine learning. Studies for the prediction of overdose mortality at national/state/county and zip code level are rapidly emerging. Geospatial methods are increasingly used to identify hotspots of opioid use and overdose. In the context of infectious disease OREs, routine genetic sequencing of patient samples to identify growing transmission clusters via phylogenetic methods could increase early detection capacity. A coordinated implementation of multiple, complementary approaches would increase our ability to successfully anticipate outbreak risk and respond preemptively. We present a multi-disciplinary framework for the prediction of OREs in the US and reflect on challenges research teams will face in implementing such strategies along with good practices.Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.