-
Current biology : CB · Mar 2017
Frogs Exploit Statistical Regularities in Noisy Acoustic Scenes to Solve Cocktail-Party-like Problems.
- Norman Lee, Jessica L Ward, Alejandro Vélez, Christophe Micheyl, and Mark A Bee.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA. Electronic address: lee33@stolaf.edu.
- Curr. Biol. 2017 Mar 6; 27 (5): 743-750.
AbstractNoise is a ubiquitous source of errors in all forms of communication [1]. Noise-induced errors in speech communication, for example, make it difficult for humans to converse in noisy social settings, a challenge aptly named the "cocktail party problem" [2]. Many nonhuman animals also communicate acoustically in noisy social groups and thus face biologically analogous problems [3]. However, we know little about how the perceptual systems of receivers are evolutionarily adapted to avoid the costs of noise-induced errors in communication. In this study of Cope's gray treefrog (Hyla chrysoscelis; Hylidae), we investigated whether receivers exploit a potential statistical regularity present in noisy acoustic scenes to reduce errors in signal recognition and discrimination. We developed an anatomical/physiological model of the peripheral auditory system to show that temporal correlation in amplitude fluctuations across the frequency spectrum ("comodulation") [4-6] is a feature of the noise generated by large breeding choruses of sexually advertising males. In four psychophysical experiments, we investigated whether females exploit comodulation in background noise to mitigate noise-induced errors in evolutionarily critical mate-choice decisions. Subjects experienced fewer errors in recognizing conspecific calls and in selecting the calls of high-quality mates in the presence of simulated chorus noise that was comodulated. These data show unequivocally, and for the first time, that exploiting statistical regularities present in noisy acoustic scenes is an important biological strategy for solving cocktail-party-like problems in nonhuman animal communication.Copyright © 2017 Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.