-
Comput Methods Programs Biomed · Nov 2018
Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images.
- Mostefa Ben Naceur, Rachida Saouli, Mohamed Akil, and Rostom Kachouri.
- Smart Computer Sciences Laboratory, Department of Computer Sciences, University of Biskra, Biskra, Algeria; Gaspard Monge Computer Science Laboratory, ESIEE-Paris, University Paris-Est Marne-la-Vallée, France. Electronic address: mostefa.bennaceur@univ-biskra.dz.
- Comput Methods Programs Biomed. 2018 Nov 1; 166: 39-49.
Background And ObjectiveNowadays, getting an efficient Brain Tumor Segmentation in Multi-Sequence MR images as soon as possible, gives an early clinical diagnosis, treatment and follow-up. The aim of this study is to develop a new deep learning model for the segmentation of brain tumors. The proposed models are used to segment the brain tumors of Glioblastomas (with both high and low grade). Glioblastomas have four properties: different sizes, shapes, contrasts, in addition, Glioblastomas appear anywhere in the brain.MethodsIn this paper, we propose three end-to-end Incremental Deep Convolutional Neural Networks models for fully automatic Brain Tumor Segmentation. Our proposed models are different from the other CNNs-based models that follow the technique of trial and error process which does not use any guided approach to get the suitable hyper-parameters. Moreover, we adopt the technique of Ensemble Learning to design a more efficient model. For solving the problem of training CNNs model, we propose a new training strategy which takes into account the most influencing hyper-parameters by bounding and setting a roof to these hyper-parameters to accelerate the training.ResultsOur experiment results reported on BRATS-2017 dataset. The proposed deep learning models achieve the state-of-the-art performance without any post-processing operations. Indeed, our models achieve in average 0.88 Dice score over the complete region. Moreover, the efficient design with the advantage of GPU implementation, allows our three deep learning models to achieve brain segmentation results in average 20.87 s.ConclusionsThe proposed deep learning models are effective for the segmentation of brain tumors and allow to obtain high accurate results. Moreover, the proposed models could help the physician experts to reduce the time of diagnostic.Copyright © 2018 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.