• J. Neurophysiol. · Mar 1997

    Neural selectivity and tuning for sinusoidal frequency modulations in the inferior colliculus of the big brown bat, Eptesicus fuscus.

    • J H Casseday, E Covey, and B Grothe.
    • Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
    • J. Neurophysiol. 1997 Mar 1; 77 (3): 1595-605.

    AbstractMost communication sounds and most echolocation sounds, including those used by the big brown bat (Eptesicus fuscus), contain frequency-modulated (FM) components, including cyclical FM. Because previous studies have shown that some neurons in the inferior colliculus (IC) of this bat respond to linear FM sweeps but not to pure tones or noise, we asked whether these or other neurons are specialized for conveying information about cyclical FM signals. In unanesthetized bats, we tested the response of 116 neurons in the IC to pure tones, noise with various bandwidths, single linear FM sweeps, sinusoidally amplitude-modulated signals, and sinusoidally frequency-modulated (SFM) signals. With the use of these stimuli, 20 neurons (17%) responded only to SFM, and 10 (9%) responded best to SFM but also responded to one other test stimulus. We refer to the total 26% of neurons that responded best to SFM as SFM-selective neurons. Fifty-nine neurons (51%) responded about equally well to SFM and other stimuli, and 27 (23%) did not respond to SFM but did respond to other stimuli. Most SFM-selective neurons responded to a limited range of modulation rates and a limited range of modulation depths. The range of modulation rates over which individual neurons responded was 5-170 Hz (n = 20). Thus SFM-selective neurons respond to low modulation rates. The depths of modulations to which the neurons responded ranged from +/-0.4 to +/-19 kHz (n = 15). Half of the SFM-selective neurons did not respond to the first cycle of SFM. This finding suggests that the mechanism for selective response to SFM involves neural delays and coincidence detectors in which the response to one part of the SFM cycle coincides in time either with the response to a later part of the SFM cycle or with the response to the first part of the next cycle. The SFM-selective neurons in the IC responded to a lower and more limited range of SFM rates than do neurons in the nuclei of the lateral lemniscus of this bat. Because the FM components of biological sounds usually have low rates of modulation, we suggest that the tuning of these neurons is related to biologically important sound parameters. The tuning could be used to detect FM in echolocation signals, modulations in high-frequency sounds that are generated by wing beats of some beetles, or social communication sounds of Eptesicus.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.