• Neuroscience · Apr 2008

    Stimulation of the inferior olivary complex alters the distribution of the type 1 corticotropin releasing factor receptor in the adult rat cerebellar cortex.

    • J-B Tian, J S King, and G A Bishop.
    • Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA.
    • Neuroscience. 2008 Apr 22; 153 (1): 308317308-17.

    AbstractIn a previous study, it was shown that populations of climbing fibers, derived from the inferior olivary complex (IOC) contain the peptide corticotropin releasing factor (CRF) and that the expression of this peptide in climbing fibers could be modulated by the level of activity in olivary afferents. The intent of this study was to determine if there was comparable plasticity in the distribution of the type 1 CRF receptor (CRF-R1) in the cerebellum of the rat. Our results indicate that CRF-R1 was localized primarily to Purkinje cell somata and their primary dendrites and granule cells. In addition, scattered immunolabeling was present over the somata of Golgi cells, basket cells and stellate cells, as well as Bergmann glial cells and their processes. IOC stimulation for 30 min at 1 Hz increased CRF-R1 expression in molecular layer interneurons and processes of Bergmann glial cells. Little to no effect on CRF receptor distribution was observed in Purkinje cells, granule cells, or Golgi cells. IOC stimulation at 5 Hz however, increased CRF-R1 expression in the processes of Bergmann glial cells while decreasing its expression in basket, stellate and, to some extent, in Purkinje cells. The present results suggest that there is activity-dependent plasticity in CRF-R1 expression that must be considered in defining the mechanism by which the CRF family of peptides modulates activity in cerebellar circuits. The present results also suggest that the primary targets of CRF released from climbing fibers are Bergmann glial cells and interneurons in the molecular layer. Further, interneurons responded with a decrease in receptor expression following more intense levels of stimulation suggesting the possibility of internalization of the receptor. In contrast, Bergmann glial cells showed an increased expression in receptor expression. These data suggest that CRF released from climbing fibers may modulate the physiological properties of basket and stellate cells as well as having a heretofore unidentified and potentially unique effect on Bergmann glia.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.