-
- B Grothe, E Covey, and J H Casseday.
- Zoological Institute, Munich University, D-80333 Munich, Germany. bgrothe@neuro.mpg.de
- J. Neurophysiol. 2001 Nov 1; 86 (5): 2219-30.
AbstractThe structure and function of the medial superior olive (MSO) is highly variable among mammals. In species with large heads and low-frequency hearing, MSO is adapted for processing interaural time differences. In some species with small heads and high-frequency hearing, the MSO is greatly reduced in size; in others, including those echolocating bats that have been examined, the MSO is large. Moreover, the MSO of bats appears to have undergone different functional specializations depending on the type of echolocation call used. The echolocation call of the mustached bat contains a prominent CF component, and its MSO is predominantly monaural; the free-tailed bat uses pure frequency-modulated calls, and its MSO is predominantly binaural. To further explore the relation of call structure to MSO properties, we recorded extracellularly from 97 single neurons in the MSO of the big brown bat, Eptesicus fuscus, a species whose echolocation call is intermediate between that of the mustached bat and the free-tailed bat. The best frequencies of MSO neurons in the big brown bat ranged from 11 to 79 kHz, spanning most of the audible range. Half of the neurons were monaural, excited by sound at the contralateral ear, while the other half showed evidence of binaural interactions, supporting the idea that the binaural characteristics of MSO neurons in the big brown bat are midway between those of the mustached bat and the free-tailed bat. Within the population of binaural neurons, the majority were excited by sound at the contralateral ear and inhibited by sound at the ipsilateral ear; only 21% were excited by sound at either ear. Discharge patterns were characterized as transient ON (37%), primary-like (33%), or transient OFF (23%). When presented with sinusoidally amplitude modulated tones, most neurons had low-pass filter characteristics with cutoffs between 100 and 300 Hz modulation frequency. For comparison with the sinusoidally modulated sounds, we presented trains of tone pips in which the pulse duration and interstimulus interval were varied. The results of these experiments indicated that it is not the modulation frequency but rather the interstimulus interval that determines the low-pass filter characteristics of MSO neurons.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.