• J Biomech Eng · Dec 2000

    Direction-dependent constriction flow in a poroelastic solid: the intervertebral disc valve.

    • D C Ayotte, K Ito, S M Perren, and S Tepic.
    • AO ASIF Research Institute, Clavadelerstrasse, CH-7270 Davos Platz, Switzerland.
    • J Biomech Eng. 2000 Dec 1; 122 (6): 587-93.

    AbstractWe hypothesize that a direction-dependent flow resistance exists in the intervertebral disc due to constriction flow in the cartilage endplates. A comparison of the hydrostatic pressure in the nucleus of the healthy intervertebral disc during daily loading with the relatively low osmotic swelling pressure during rest, suggests the necessity of such direction-dependent flow resistance to ensure that all the fluid exuded from the disc during loading is recovered during rest. A physical model demonstrating the direction-dependent resistance of constriction flow in a poroelastic solid is presented. A finite element model was developed and validated against this physical model. The finite element model showed that decrease of the constriction hole area not only increases the resistance to fluid flow, but also causes the direction-dependency of flow resistance to decrease. Through this mechanism, endplate sclerosis could affect normal daily fluid exchange in the intervertebral disc, resulting in decreased mass transport and/or dehydration of the disc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.