• Medical care · Nov 2010

    An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data.

    • Ruben Amarasingham, Billy J Moore, Ying P Tabak, Mark H Drazner, Christopher A Clark, Song Zhang, W Gary Reed, Timothy S Swanson, Ying Ma, and Ethan A Halm.
    • Center for Clinical Innovation, Parkland Health and Hospital System, Dallas, TX 75235, USA. ramara@parknet.pmh.org
    • Med Care. 2010 Nov 1; 48 (11): 981-8.

    BackgroundA real-time electronic predictive model that identifies hospitalized heart failure (HF) patients at high risk for readmission or death may be valuable to clinicians and hospitals who care for these patients.MethodsAn automated predictive model for 30-day readmission and death was derived and validated from clinical and nonclinical risk factors present on admission in 1372 HF hospitalizations to a major urban hospital between January 2007 and August 2008. Data were extracted from an electronic medical record. The performance of the electronic model was compared with mortality and readmission models developed by the Center for Medicaid and Medicare Services (CMS models) and a HF mortality model derived from the Acute Decompensated Heart Failure Registry (ADHERE model).ResultsThe 30-day mortality and readmission rates were 3.1% and 24.1% respectively. The electronic model demonstrated good discrimination for 30 day mortality (C statistic 0.86) and readmission (C statistic 0.72) and performed as well, or better than, the ADHERE model and CMS models for both outcomes (C statistic ranges: 0.72-0.73 and 0.56-0.66 for mortality and readmissions respectively; P < 0.05 in all comparisons). Markers of social instability and lower socioeconomic status improved readmission prediction in the electronic model (C statistic 0.72 vs. 0.61, P < 0.05).ConclusionsClinical and social factors available within hours of hospital presentation and extractable from an EMR predicted mortality and readmission at 30 days. Incorporating complex social factors increased the model's accuracy, suggesting that such factors could enhance risk adjustment models designed to compare hospital readmission rates.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.