• IEEE Trans Biomed Eng · Apr 1998

    Anesthesia control using midlatency auditory evoked potentials.

    • A Nayak and R J Roy.
    • Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
    • IEEE Trans Biomed Eng. 1998 Apr 1; 45 (4): 409-21.

    AbstractThis paper shows the development of a system to control inhalation anesthetic concentration delivered to a patient based upon that patient's midlatency auditory evoked potentials (MLAEP's). It was developed and tested in dogs by determining response to the supramaximal stimulus of tail clamping. Prior to tail clamp, the MLAEP was recorded along with inhalational anesthetic concentration and classified as responders or nonresponders as determined by tail clamping. This was performed at a number of different anesthetic levels to obtain a data training set. The MLAEP's were compacted by means of discrete time wavelet transform (DTWT), and together with anesthetic concentration value, a stepwise discriminant analysis (SDA) was performed to determine those features which could separate responders from nonresponders. It was determined that only three features were necessary for this recognition. These features were then used to train a four-layer artificial neural network (ANN) to separate the responders from nonresponders. The network was tested using a separate set of data, resulting in a 93% recognition rate in the anesthetic transition zone between responders and nonresponders, and 100% recognition rate outside this zone. The anesthetic controller used this ANN combined with fuzzy logic and rule-based control. A set of ten animal experiments were performed to test the robustness of this controller. Acceptable clinical performance was obtained, showing the feasibility of this approach.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.