-
The Journal of nutrition · Nov 2013
Fish oil alleviates activation of the hypothalamic-pituitary-adrenal axis associated with inhibition of TLR4 and NOD signaling pathways in weaned piglets after a lipopolysaccharide challenge.
- Yulan Liu, Feng Chen, Quan Li, Jack Odle, Xi Lin, Huiling Zhu, Dingan Pi, Yongqing Hou, Yu Hong, and Haifeng Shi.
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.
- J. Nutr. 2013 Nov 1; 143 (11): 1799-807.
AbstractLong-chain n-3 (ω-3) polyunsaturated fatty acids exert beneficial effects in neuroendocrine dysfunctions in animal models and clinical trials. However, the mechanism(s) underlying the beneficial effects remains to be elucidated. We hypothesized that dietary treatment with fish oil (FO) could mitigate LPS-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis through inhibition of Toll-like receptor 4 and nucleotide-binding oligomerization domain protein signaling pathways. Twenty-four weaned pigs were used in a 2 × 2 factorial design, and the main factors consisted of diet (5% corn oil vs. 5% FO) and immunological challenge (saline vs. LPS). After 21 d of dietary treatment with 5% corn oil or FO diets, pigs were treated with saline or LPS. Blood samples were collected at 0 (preinjection), 2, and 4 h postinjection, and then pigs were humanely killed by intravenous injection of 40 mg/kg body weight sodium pentobarbital for tissue sample collection. FO led to enrichment of eicosapentaenoic acid and docosahexaenoic acid and total n-3 polyunsaturated fatty acids in hypothalamus, pituitary gland, adrenal gland, spleen, and thymus. FO decreased plasma adrenocorticotrophin and cortisol concentrations as well as mRNA expressions of hypothalamic corticotropin releasing hormone and pituitary proopiomelanocortin. FO also reduced mRNA expression of tumor necrosis factor-α in hypothalamus, adrenal gland, spleen, and thymus, and of cyclooxygenase 2 in hypothalamus. Moreover, FO downregulated the mRNA expressions of Toll-like receptor 4 (TLR4) and its downstream molecules, including cluster differentiation factor 14, myeloid differentiation factor 2, myeloid differentiation factor 88, interleukin-1 receptor-associated kinase 1, tumor necrosis factor-α receptor-associated factor 6, and nuclear factor kappa-light-chain-enhancer of activated B cells p65, and also decreased the mRNA expressions of nucleotide-binding oligomerization domain 1, nucleotide-binding oligomerization domain 2, and their adaptor molecule receptor-interacting serine/threonine-protein kinase 2. These results suggested that FO attenuates the activation of the HPA axis induced by LPS challenge. The beneficial effects of FO on the HPA axis may be associated with decreasing the production of brain or peripheral proinflammatory cytokines through inhibition of TLR4 and nucleotide-binding oligomerization domain protein signaling pathways.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.