The Journal of nutrition
-
The Journal of nutrition · Nov 2013
Fish oil alleviates activation of the hypothalamic-pituitary-adrenal axis associated with inhibition of TLR4 and NOD signaling pathways in weaned piglets after a lipopolysaccharide challenge.
Long-chain n-3 (ω-3) polyunsaturated fatty acids exert beneficial effects in neuroendocrine dysfunctions in animal models and clinical trials. However, the mechanism(s) underlying the beneficial effects remains to be elucidated. We hypothesized that dietary treatment with fish oil (FO) could mitigate LPS-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis through inhibition of Toll-like receptor 4 and nucleotide-binding oligomerization domain protein signaling pathways. ⋯ Moreover, FO downregulated the mRNA expressions of Toll-like receptor 4 (TLR4) and its downstream molecules, including cluster differentiation factor 14, myeloid differentiation factor 2, myeloid differentiation factor 88, interleukin-1 receptor-associated kinase 1, tumor necrosis factor-α receptor-associated factor 6, and nuclear factor kappa-light-chain-enhancer of activated B cells p65, and also decreased the mRNA expressions of nucleotide-binding oligomerization domain 1, nucleotide-binding oligomerization domain 2, and their adaptor molecule receptor-interacting serine/threonine-protein kinase 2. These results suggested that FO attenuates the activation of the HPA axis induced by LPS challenge. The beneficial effects of FO on the HPA axis may be associated with decreasing the production of brain or peripheral proinflammatory cytokines through inhibition of TLR4 and nucleotide-binding oligomerization domain protein signaling pathways.