• Physiological measurement · Jul 2011

    The impact of electrode area, contact impedance and boundary shape on EIT images.

    • Alistair Boyle and Andy Adler.
    • Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada. boyle@sce.carleton.ca
    • Physiol Meas. 2011 Jul 1; 32 (7): 745-54.

    AbstractElectrical impedance tomography (EIT) measures the conductivity distribution within an object based on the current applied and voltage measured at surface electrodes. Thus, EIT images are sensitive to electrode properties (i.e. contact impedance, electrode area and boundary shape under the electrode). While some of these electrode properties have been investigated individually, this paper investigates these properties and their interaction using finite element method simulations and the complete electrode model (CEM). The effect of conformal deformations on image reconstruction when using the CEM was of specific interest. Observed artefacts were quantified using a measure that compared an ideal image to the reconstructed image, in this case a no-noise reconstruction that isolated the electrodes' effects. For electrode contact impedance and electrode area, uniform reductions to all electrodes resulted in ringing artefacts in the reconstructed images when the CEM was used, while parameter variations that were not correlated amongst electrodes resulted in artefacts distributed throughout the image. When the boundary shape changed under the electrode, as with non-symmetric conformal deformations, using the CEM resulted in structured distortions within the reconstructed image. Mean electrode contact impedance increases, independent of inter-electrode variation, did not result in artefacts in the reconstructed image.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.