• Spine · Oct 2000

    Comparative Study

    Impact response of the intervertebral disc in a finite-element model.

    • C K Lee, Y E Kim, C S Lee, Y M Hong, J M Jung, and V K Goel.
    • Department of Orthopedic Surgery, College of Medicine, Seoul National University Hospital, Seoul, Korea.
    • Spine. 2000 Oct 1; 25 (19): 2431-9.

    Study DesignA three-dimensional nonlinear poroelastic finite-element model of a vertebra disc was used to analyze the biomechanical effects of impact loading on the spinal segment.ObjectivesTo predict changes in biomechanical parameters such as intradiscal pressure, dynamic stiffness, stresses in the endplate region, and the shock-absorbing mechanism of the spine under different impact duration/loading rates, and to investigate the relation between the rate of loading and the fracture potential of the vertebral body.Summary Of Background DataIt is not practical to discern the role of impact duration using experimental protocols. Analytical studies are better suited to this purpose. However, previous poroelastic finite-element models of the motion segments have dealt mostly with creep phenomena.MethodsA three-dimensional, L3-L4 motion-segment, finite-element model was modified to incorporate the poroelastic properties of the disc, endplate, and cancellous core, and thus simulate the shock-absorbing phenomena. The results were analyzed under variable impact durations for a constant maximum compressive impact load of 3 kN.ResultsFor a shorter impact duration and a given F(max), relatively high cancellous core pressure was generated as compared with a case of long impact duration, although the amount of impulse was increased. In contrast, relatively constant pore pressures were generated in the nucleus regardless of the impact duration. The changes in spinal segment stiffness as a function of impact duration indicated that for a shorter duration of impact, high dynamic stiffness increases the stability of the spinal segment against the impact load. However, the corresponding increase in stresses within the vertebral body and endplate may produce fractures.ConclusionsThe finite-element technique was used to address the role of impact duration in producing trauma to the spinal motion segment. Within the limitations of the model, the results suggest that fractures are likely to occur under shorter impact duration conditions. Depending on the strength of the region, a fracture may be initiated in the endplate region or the posterior wall of the cortical shell. The nucleus pressure is independent of the impact duration and depends only on the magnitude of the impact force.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.