• Journal of biomechanics · Jan 2006

    An approach to the simulation of fluid-structure interaction in the aortic valve.

    • C J Carmody, G Burriesci, I C Howard, and E A Patterson.
    • Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
    • J Biomech. 2006 Jan 1; 39 (1): 158-69.

    AbstractA pair of finite element models has been employed to study the interaction of blood flow with the operation of the aortic valve. A three-dimensional model of the left ventricle with applied wall displacements has been used to generate data for the spatially and time-varying blood velocity profile across the aortic aperture. These data have been used as the inlet loading conditions in a three-dimensional model of the aortic valve and its surrounding structures. Both models involve fluid-structure interaction and simulate the cardiac cycle as a dynamic event. Confidence in the models was obtained by comparison with data obtained in a pulse duplicator. The results show a circulatory flow being generated in the ventricle which produces a substantially axial flow through the aortic aperture. The aortic valve behaves in an essentially symmetric way under the action of this flow, so that the pressure difference across the leaflets is approximately uniform. This work supports the use of spatially uniform but temporally variable pressure distributions across the leaflets in dry or structural models of aortic valves. The study is a major advance through its use of truly three-dimensional geometry, spatially non-uniform loading conditions for the valve leaflets and the successful modelling of progressive contact of the leaflets in a fluid environment.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…