• Physiological measurement · Dec 2008

    Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms.

    • Raúl Alcaraz and José Joaquín Rieta.
    • Innovation in Bioengineering Research Group, University of Castilla-La Mancha, Campus Universitario, 16071, Cuenca, Spain. raul.alcaraz@uclm.es
    • Physiol Meas. 2008 Dec 1; 29 (12): 1351-69.

    AbstractThe proper analysis and characterization of atrial fibrillation (AF) from surface electrocardiographic (ECG) recordings requires to cancel out the ventricular activity (VA), which is composed of the QRS complex and the T wave. Historically, for single-lead ECGs, the averaged beat subtraction (ABS) has been the most widely used technique. However, this method is very sensitive to QRST wave variations and, moreover, high-quality cancelation templates may be difficult to obtain when only short length and single-lead recordings are available. In order to overcome these limitations, a new QRST cancelation method based on adaptive singular value cancelation (ASVC) applied to each single beat is proposed. In addition, an exhaustive study about the optimal set of complexes for better cancelation of every beat is also presented for the first time. The whole study has been carried out with both simulated and real AF signals. For simulated AF, the cancelation performance was evaluated making use of a cross-correlation index and the normalized mean square error (nmse) between the estimated and the original atrial activity (AA). For real AF signals, two additional new parameters were proposed. First, the ventricular residue (VR) index estimated the presence of ventricular activity in the extracted AA. Second, the similarity (S) evaluated how the algorithm preserved the AA segments out of the QRST interval. Results indicated that for simulated AF signals, mean correlation, nmse, VR and S values were 0.945 +/- 0.024, 0.332 +/- 0.073, 1.552 +/- 0.386 and 0.986 +/- 0.012, respectively, for the ASVC method and 0.866 +/- 0.042, 0.424 +/- 0.120, 2.161 +/- 0.564 and 0.922 +/- 0.051 for ABS. In the case of real signals, the mean VR and S values were 1.725 +/- 0.826 and 0.983 +/- 0.038, respectively, for ASVC and 3.159 +/- 1.097 and 0.951 +/- 0.049 for ABS. Thus, ASVC provides a more accurate beat-to-beat ventricular QRST representation than traditional techniques. As a consequence, VA cancelation is optimized and the AA can be extracted more precisely. Finally, the study has proven that optimal VA cancelation is achieved when a number between 20 and 30 complexes is selected following a correlation-based strategy.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…