• IEEE Trans Biomed Eng · Jan 2009

    The role of slow potassium current in nerve conduction block induced by high-frequency biphasic electrical current.

    • Hailong Liu, James R Roppolo, William C de Groat, and Changfeng Tai.
    • Department of Urology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
    • IEEE Trans Biomed Eng. 2009 Jan 1; 56 (1): 137-46.

    AbstractThe role of slow potassium current in nerve conduction block induced by high-frequency biphasic electrical current was analyzed using a lumped circuit model of a myelinated axon based on the Schwarz-Reid-Bostock model. The results indicate that nerve conduction block at stimulation frequencies above 4 kHz is due to constant activation of both fast and slow potassium channels, but the block at stimulation frequencies below 4 kHz could be due to either anodal or cathodal dc block depending on the time of the action potential arriving at the block electrode. When stimulation frequency was above 4 kHz, the slow potassium current was about 3.5 to 6.5 times greater than the fast potassium current at blocking threshold, indicating that the slow potassium current played a more dominant role than the fast potassium current. The blocking location moved from the node under the blocking electrode to a nearby node as the stimulation intensity increased. This simulation study reveals that in mammalian myelinated axons, the slow potassium current probably plays a critical role in the nerve conduction block induced by high-frequency biphasic electrical current.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…