IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · Jan 2009
A strategy for identifying locomotion modes using surface electromyography.
This study investigated the use of surface electromyography (EMG) combined with pattern recognition (PR) to identify user locomotion modes. Due to the nonstationary characteristics of leg EMG signals during locomotion, a new phase-dependent EMG PR strategy was proposed for classifying the user's locomotion modes. The variables of the system were studied for accurate classification and timely system response. ⋯ For eight able-bodied subjects, the average classification errors in the four defined phases using ten electrodes located over the muscles above the knee (simulating EMG from the residual limb of a TF amputee) were 12.4% +/- 5.0%, 6.0% +/- 4.7%, 7.5% +/- 5.1%, and 5.2% +/- 3.7%, respectively. Comparable results were also observed in our pilot study on the subjects with TF amputations. The outcome of this investigation could promote the future design of neural-controlled artificial legs.
-
IEEE Trans Biomed Eng · Jan 2009
Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording.
We have developed a multichannel electrogmyography sensor system capable of receiving and processing signals from up to 32 implanted myoelectric sensors (IMES). The appeal of implanted sensors for myoelectric control is that electromyography (EMG) signals can be measured at their source providing relatively cross-talk-free signals that can be treated as independent control sites. An external telemetry controller receives telemetry sent over a transcutaneous magnetic link by the implanted electrodes. ⋯ We have a fully operational system. The system has been tested in animals. Implants have been chronically implanted in the legs of three cats and are still completely operational four months after implantation.
-
IEEE Trans Biomed Eng · Jan 2009
The role of slow potassium current in nerve conduction block induced by high-frequency biphasic electrical current.
The role of slow potassium current in nerve conduction block induced by high-frequency biphasic electrical current was analyzed using a lumped circuit model of a myelinated axon based on the Schwarz-Reid-Bostock model. The results indicate that nerve conduction block at stimulation frequencies above 4 kHz is due to constant activation of both fast and slow potassium channels, but the block at stimulation frequencies below 4 kHz could be due to either anodal or cathodal dc block depending on the time of the action potential arriving at the block electrode. ⋯ The blocking location moved from the node under the blocking electrode to a nearby node as the stimulation intensity increased. This simulation study reveals that in mammalian myelinated axons, the slow potassium current probably plays a critical role in the nerve conduction block induced by high-frequency biphasic electrical current.