-
- Jun Liang, Zhongan Zhang, Lingye Fan, Dongxia Shen, Zhenying Chen, Jie Xu, Fangmin Ge, Junyi Xin, and Jianbo Lei.
- IT Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
- J Healthc Eng. 2020 Jan 1; 2020: 8822311.
ObjectiveWe focused on medical informatics journal publications rather than on conference proceedings by comparing and analyzing the data from journals and conferences from a broader perspective. The aim is to summarize the unique contributions of China to medical digitization and foster more multilevel international cooperation.MethodIn February 2019, publications from 2008 to 2018 in three major English-language medical informatics journals were retrieved through Scopus, including the journals, namely, International Journal of Medical Informatics (IJMI, international community), JAMIA (United States), and Methods of Information in Medicine (MIM, Europe). Three major Chinese-language journals, namely, China Digital Medicine (CDM), Chinese Journal of Health Informatics and Management (CJHIM), and Chinese Journal of Medical Library and Information Science (CJMLIS), were searched within the major three Chinese literature databases. The datasets were preprocessed using the NLP package on Python, and a smart local moving algorithm was used as a clustering method for identifying the aforementioned journals.ResultBetween 2008 and 2018, the total number of published papers and H-index of the three English-language journals was 1371 and 67 (IJMI), 1752 and 86 (JAMIA), and 637 and 35 (MIM), respectively. In the same period, the total number of published papers and H-index in the three Chinese-language journals was 6668 and 23 (CDM), 1668 and 22 (CJHIM), and 2557 and 25 (CJMLIS), respectively. IJMI, JAMIA, and MIM received submissions from 82, 59, and 62 countries/regions, respectively. By contrast, the three Chinese journals only received submissions from seven foreign countries. The proportions of authors from institutional affiliations were similar between the three English-language journals (IJMI, JAMIA, and MIM) and CJMLIS because the majority of the authors were from universities (81%, 74%, 73%, and 65.2%), followed by medical institutions (12%, 10%, 9%, and 23.4%) or research institutes (2%, 4%, 10%, and 4.3%). Furthermore, the proportions of the authors from enterprises were low (2%, 6%, 4%, and 0.3%) for all journals. However, the authors in CDM and CJHIM were mainly from medical institutions (50% and 40%), followed by universities (33% and 32%) and research institutes (3% and 4%). In addition, the proportions of enterprises were only 3% and 2%, respectively. Among the top five authors in three English-language journals (ranked in terms of the number of published papers), 100% had doctoral or master's degrees, compared with only 60% in the Chinese journals. Additionally, 28204 different keywords were extracted from the aforementioned papers, covering 275 specific high-frequency key terms. Based on these key terms, four clusters were found in the English literature-"Health and Clinical Information Systems," "Internet and Telemedicine," "Medical Data Statistical Analysis," and "EHRs and Information Management"-and three clusters were found in the Chinese literature: "Hospital Information Systems and EMR," "Library Science and Bibliometrics Analysis," and "Medical Reform Policy and Health Digitization." Only two clusters are similar, and Chinese-language journals focus more on health information in technology and industrial applications than in medical informatics basic research.ConclusionThis study provides important insights into the development of medical informatics (MI) in China and Western countries showing that the medical informatics journals of China, the United States, and Europe have distinct characteristics. Specifically, first, compared with the Western journals, the number of papers published in the journals of professional associations in the field of MI in China is large and the application value is high, but the academic influence and academic value are relatively low; second, most of the authors of the Chinese papers are from hospitals, and most of the counterparts in the Western countries are from universities. The proportion of master's or doctoral degrees in the former is also lower than that of the latter; furthermore, regarding paper themes, on the one hand, China MI has no theoretical and basic research on medical data statistics and consumer health based on the Internet and telemedicine; on the other hand, after nearly 10 years of hospital digital development, China has fully used the latecomer and application advantages in hospitals and, through extensive international cooperation, has made significant advancements in and contributions to the development of medical information.Copyright © 2020 Jun Liang et al.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.