• Physiological measurement · Oct 2010

    Synthetic ECG generation and Bayesian filtering using a Gaussian wave-based dynamical model.

    • Omid Sayadi, Mohammad B Shamsollahi, and Gari D Clifford.
    • Biomedical Signal and Image Processing Laboratory (BiSIPL), School of Electrical Engineering, Sharif University of Technology, Tehran, Iran. osayadi@ee.sharif.edu
    • Physiol Meas. 2010 Oct 1; 31 (10): 1309-29.

    AbstractIn this paper, we describe a Gaussian wave-based state space to model the temporal dynamics of electrocardiogram (ECG) signals. It is shown that this model may be effectively used for generating synthetic ECGs as well as separate characteristic waves (CWs) such as the atrial and ventricular complexes. The model uses separate state variables for each CW, i.e. P, QRS and T, and hence is capable of generating individual synthetic CWs as well as realistic ECG signals. The model is therefore useful for generating arrhythmias. Simulations of sinus bradycardia, sinus tachycardia, ventricular flutter, atrial fibrillation and ventricular tachycardia are presented. In addition, discrete versions of the equations are presented for a model-based Bayesian framework for denoising. This framework, together with an extended Kalman filter and extended Kalman smoother, was used for denoising the ECG for both normal rhythms and arrhythmias. For evaluating the denoising performance, the signal-to-noise ratio (SNR) improvement of the filter outputs and clinical parameter stability were studied. The results demonstrate superiority over a wide range of input SNRs, achieving a maximum 12.7 dB improvement. Results indicate that preventing clinically relevant distortion of the ECG is sensitive to the number of model parameters. Models are presented which do not exhibit such distortions. The approach presented in this paper may therefore serve as an effective framework for synthetic ECG generation and model-based filtering of noisy ECG recordings.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.