• NeuroImage · Jul 2015

    The language skeleton after dissecting meaning: A functional segregation within Broca's Area.

    • Tomás Goucha and Angela D Friederici.
    • Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany; Berlin School of Mind and Brain, Humboldt University, Germany. Electronic address: goucha@cbs.mpg.de.
    • Neuroimage. 2015 Jul 1; 114: 294-302.

    AbstractBroca's area is proposed as a crucial brain area for linguistic computations. Language processing goes beyond word-level processing, also implying the integration of meaningful information (semantics) with the underlying structural skeleton (syntax). There is an on-going debate about the specialisation of the subregions of Broca's area-Brodmann areas (BA) 44 and 45-regarding the latter aspects. Here, we tested if syntactic information is specifically processed in BA 44, whereas BA 45 is mainly recruited for semantic processing. We contrasted conditions with sentence structure against conditions with random order in two fMRI experiments. Besides, in order to disentangle these processes, we systematically removed the amount of semantic information available in the stimuli. This was achieved in Experiment 1 by replacing meaningful words (content words) by pseudowords. Within real word conditions we found broad activation in the left hemisphere, including the inferior frontal gyrus (BA 44/45/47), the anterior temporal lobe and posterior superior temporal gyrus (pSTG) and sulcus (pSTS). For pseudowords we found a similar activation pattern, still involving BA 45. Among the pseudowords in Experiment 1, we kept those word elements that convey meaning like un- in unhappy or -hood in brotherhood (i.e. derivational morphology). In Experiment 2 we tested whether the activation in BA 45 was due to their presence. We therefore further removed derivational morphology, only leaving word elements that determine syntactic structure (i.e. inflectional morphology, e.g. the verb ending -s in he paints). Now, in the absence of all semantic cues, including derivational morphology, only BA 44 was active. Additional analyses showed a selective responsiveness of this area to syntax-relevant cues. These findings confirm BA 44 as a core area for the processing of pure syntactic information. This furthermore suggests that the brain represents structural and meaningful aspects of language separately. Copyright © 2015 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…