-
Molecular immunology · Mar 2007
Clinical TrialAlterations in T cell signal transduction by M. leprae antigens is associated with downregulation of second messengers PKC, calcium, calcineurin, MAPK and various transcription factors in leprosy patients.
- Vineeta Chattree, Neena Khanna, and D N Rao.
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India.
- Mol. Immunol. 2007 Mar 1; 44 (8): 2066-77.
AbstractMycobacterium leprae, the causative agent of leprosy, challenges host defense mechanism by impairing the signal transduction of T cells which leads to downregulation of T cell proliferation, mainly as a consequence of interference with IL-2 production. In this study we sought to identify how soluble forms of M. leprae antigen(s) or particulate (liposome) delivery of the same antigens with two immunomodulators Murabutide and T cell peptide of Trat protein influence the transcription of IL-2 gene in anergic T cells of lepromatous patients. It was demonstrated that MLCwA/ManLAM stimulated cells of BL/LL patients showed defects in both jun-NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) activities there by resulting in decreased AP-1 activity. Additionally these cells showed reduced calcium levels, PKC activity and calcineurin (CN) activity. This led to impaired nuclear translocation of NFkappaB and NFAT in these patients. In contrast, when same M. leprae antigen(s) were incorporated with the two immunomodulators in liposomal form, increased transcription of IL-2 gene was observed especially in BL/LL patients which appears to be due to, at least in part, to increased expression of AP-1 Fos and Jun family members, NFkappaB and NFAT1 proteins. The increased expression of these transcription factors correlated with increased ERK/JNK, PKC and CN activities in these patients. Since activation of ERK/JNK/PKC kinases and CN phosphatase are required for stimulation of IL-2 transcription, these data provide a molecular explanation for the block in IL-2 production by M. leprae antigens. Thus the above study revealed suppression of all the three distinct biochemical pathways, viz. Ca-CN-NFAT pathway, PKC-NF-kappaB pathway, and MAPK-AP-1 pathway by M. leprae antigen(s) in anergized T cells of lepromatous patients which were activated by liposomal delivery of M. leprae antigens containing the two immunomodulators leading to optimal induction of IL-2 gene expression, which was required for the activation, and proliferation of T cells in lepromatous patients.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.