Molecular immunology
-
Molecular immunology · Mar 2007
Comparative StudyEffect of supraphysiologic levels of C1-inhibitor on the classical, lectin and alternative pathways of complement.
C1-inhibitor is increasingly used experimentally and clinically in inflammatory conditions like septicemia and ischemia-reperfusion injury. Several mechanisms may account for the anti-inflammatory effects of C1-inhibitor, including inhibition of complement. The aim of the present study was to investigate and compare the supraphysiologic effect of C1-inhibitor on the three complement pathways. ⋯ The inhibition pattern was strikingly different in the classical and lectin pathway, compared to the alternative. Previous studies interpreting the effects of C1-inhibitor as only due to classical pathway inhibition needs reconsideration. The data has implications for the therapeutic use of C1-inhibitor.
-
Molecular immunology · Mar 2007
Clinical TrialAlterations in T cell signal transduction by M. leprae antigens is associated with downregulation of second messengers PKC, calcium, calcineurin, MAPK and various transcription factors in leprosy patients.
Mycobacterium leprae, the causative agent of leprosy, challenges host defense mechanism by impairing the signal transduction of T cells which leads to downregulation of T cell proliferation, mainly as a consequence of interference with IL-2 production. In this study we sought to identify how soluble forms of M. leprae antigen(s) or particulate (liposome) delivery of the same antigens with two immunomodulators Murabutide and T cell peptide of Trat protein influence the transcription of IL-2 gene in anergic T cells of lepromatous patients. It was demonstrated that MLCwA/ManLAM stimulated cells of BL/LL patients showed defects in both jun-NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) activities there by resulting in decreased AP-1 activity. ⋯ Since activation of ERK/JNK/PKC kinases and CN phosphatase are required for stimulation of IL-2 transcription, these data provide a molecular explanation for the block in IL-2 production by M. leprae antigens. Thus the above study revealed suppression of all the three distinct biochemical pathways, viz. Ca-CN-NFAT pathway, PKC-NF-kappaB pathway, and MAPK-AP-1 pathway by M. leprae antigen(s) in anergized T cells of lepromatous patients which were activated by liposomal delivery of M. leprae antigens containing the two immunomodulators leading to optimal induction of IL-2 gene expression, which was required for the activation, and proliferation of T cells in lepromatous patients.
-
Molecular immunology · Mar 2007
Comparative StudyGene gun immunization with clinically relevant allergens aggravates allergen induced pathology and is contraindicated for allergen immunotherapy.
Gene gun immunization has been associated with the induction of a heterologous type of immune response characterized by a T(H)1-like immune reaction on the cellular level, i.e. generation of IFN-gamma secreting CD8(+) T-cells, yet a T(H)2 biased serology as indicated by high IgG1:IgG2a ratios and induction of IgE. Nevertheless, gene gun immunization using the model molecule beta-galactosidase has been argued to prevent IgE induction and to promote T(H)1 cells with respect to allergy DNA immunization. In our current study, we evaluated the potential of gene gun immunization to prevent type I allergic reactions comparing beta-galactosidase with two clinically relevant allergens, and further investigated the effect of gene gun immunization on relevant lung parameters. ⋯ This T(H)2 effect was influenced by the nature of the antigen, with a more pronounced T(H)2-bias for the allergens Bet v 1 and Phl p 5 compared to beta-galactosidase. Gene gun immunization with all three antigens promoted eosinophil influx into the lung and did not alleviate lung pathology after intranasal provocation. In contrast to needle injection of plasmid DNA, which triggers a clearly T(H)1-biased and allergy-preventing immune response, gene gun application fails to induce anti-allergic reactions with all tested antigens and is therefore contraindicated for allergen-specific immunotherapy.