• Neuroscience · Aug 2010

    Genetic deletion of Nogo/Rtn4 ameliorates behavioral and neuropathological outcomes in amyloid precursor protein transgenic mice.

    • E Masliah, F Xie, S Dayan, E Rockenstein, M Mante, A Adame, C M Patrick, A F Chan, and B Zheng.
    • Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
    • Neuroscience. 2010 Aug 11; 169 (1): 488-94.

    AbstractThe cognitive impairment in Alzheimer's disease (AD) is associated with synaptic loss, neuritic sprouting and altered neuroplasticity. Compensatory neuritic sprouting might be beneficial, while aberrant sprouting could contribute to the neurodegenerative process. Nogo (or Rtn4) is a major myelin-derived inhibitor of axonal sprouting in adult CNS. Recent evidence has implicated both the Reticulon family of proteins and a receptor for Nogo, NgR, in reducing amyloid-beta production, a key step in AD pathogenesis. To test the hypothesis that Nogo, as an inhibitor of axonal sprouting, modulates disease progression in a mouse model of AD, we introduced an APP transgene (a human APP minigene carrying the Swedish and Indiana mutations under the platelet-derived growth factor subunit B (PDGFB) promoter) into a Nogo null background and characterized the behavioral and neuropathological consequences. We found that deleting Nogo ameliorates learning and memory deficits of APP transgenic mice in the Morris water maze at an early/intermediate stage of the disease. Furthermore, deleting Nogo restored the expression levels of markers for synapto-dendritic complexity and axonal sprouting including synaptophysin, MAP2, GAP43 and neurofilament that are otherwise reduced in APP transgenic mice. Other aspects of disease progression including neuronal loss, astrogliosis, microgliosis and, importantly, Abeta levels and amyloid deposits were not significantly altered by Nogo deletion. These data support the hypothesis that Nogo-mediated inhibition of neuritic sprouting contributes to the disease progression in an APP transgenic model of AD in a way that is mechanistically distinct from what has been proposed for Rtn3 or NgR.Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…