• Neuropsychologia · Jan 2007

    Review

    Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging.

    • Patrik Vuilleumier and Gilles Pourtois.
    • Laboratory for Behavioral Neurology & Imaging of Cognition, Clinic of Neurology, University Hospital of Geneva, Geneva, Switzerland. patrik.vuilleumier@medecine.unige.ch
    • Neuropsychologia. 2007 Jan 7; 45 (1): 174-94.

    AbstractBrain imaging studies in humans have shown that face processing in several areas is modulated by the affective significance of faces, particularly with fearful expressions, but also with other social signals such gaze direction. Here we review haemodynamic and electrical neuroimaging results indicating that activity in the face-selective fusiform cortex may be enhanced by emotional (fearful) expressions, without explicit voluntary control, and presumably through direct feedback connections from the amygdala. fMRI studies show that these increased responses in fusiform cortex to fearful faces are abolished by amygdala damage in the ipsilateral hemisphere, despite preserved effects of voluntary attention on fusiform; whereas emotional increases can still arise despite deficits in attention or awareness following parietal damage, and appear relatively unaffected by pharmacological increases in cholinergic stimulation. Fear-related modulations of face processing driven by amygdala signals may implicate not only fusiform cortex, but also earlier visual areas in occipital cortex (e.g., V1) and other distant regions involved in social, cognitive, or somatic responses (e.g., superior temporal sulcus, cingulate, or parietal areas). In the temporal domain, evoked-potentials show a widespread time-course of emotional face perception, with some increases in the amplitude of responses recorded over both occipital and frontal regions for fearful relative to neutral faces (as well as in the amygdala and orbitofrontal cortex, when using intracranial recordings), but with different latencies post-stimulus onset. Early emotional responses may arise around 120ms, prior to a full visual categorization stage indexed by the face-selective N170 component, possibly reflecting rapid emotion processing based on crude visual cues in faces. Other electrical components arise at later latencies and involve more sustained activities, probably generated in associative or supramodal brain areas, and resulting in part from the modulatory signals received from amygdala. Altogether, these fMRI and ERP results demonstrate that emotion face perception is a complex process that cannot be related to a single neural event taking place in a single brain regions, but rather implicates an interactive network with distributed activity in time and space. Moreover, although traditional models in cognitive neuropsychology have often considered that facial expression and facial identity are processed along two separate pathways, evidence from fMRI and ERPs suggests instead that emotional processing can strongly affect brain systems responsible for face recognition and memory. The functional implications of these interactions remain to be fully explored, but might play an important role in the normal development of face processing skills and in some neuropsychiatric disorders.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.