• Plos One · Jan 2020

    A bivariate prediction approach for adapting the health care system response to the spread of COVID-19.

    • Paolo Berta, Paolo Paruolo, Stefano Verzillo, and Pietro Giorgio Lovaglio.
    • Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy.
    • Plos One. 2020 Jan 1; 15 (10): e0240150.

    AbstractThe spread of COVID-19 implied a large and fast increase of demand for intensive care services. To face this increase in demand, health care systems need to adapt their response by increasing hospital beds, intensive care unit (ICU) capacity and by (re-)deploying doctors and other personnel. This paper proposes a forecast approach based on the Vector Error Correction model for the daily counts of hospitalized patients with symptoms and of patients in ICU, using publicly available data on the current COVID-19 outbreak in Italy, Switzerland and Spain. The level of analysis is the local government managing the health care system response, which corresponds to regions for Italy. The one-week-ahead forecasts are validated with out-of-sample data over successive weeks; they are found to provide timely and robust prediction of ICU capacity needs in Lombardy, the most-affected Italian region, starting from the sample of the first 2 weeks of data. The same methodology is successfully validated on other Italian regions, Switzerland and Spain. This approach may be used in other countries/regions/provinces to help adapt the health care system response to COVID-19 (or other similar disease); for this purpose, the open-source software code to produce the forecasts is provided with the paper.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…