• Med Phys · Nov 2018

    CT radiomics to predict high-risk intraductal papillary mucinous neoplasms of the pancreas.

    • Jayasree Chakraborty, Abhishek Midya, Lior Gazit, Marc Attiyeh, Liana Langdon-Embry, Peter J Allen, Do Richard K G RKG Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA., and Amber L Simpson.
    • Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
    • Med Phys. 2018 Nov 1; 45 (11): 5019-5029.

    PurposeIntraductal papillary mucinous neoplasms (IPMNs) are radiographically visible precursor lesions of pancreatic cancer. Despite standard criteria for assessing risk, only 18% of cysts are malignant at resection. Thus, a large number of patients undergo unnecessary invasive surgery for benign disease. The ability to identify IPMNs with low or high risk of transforming into invasive cancer would optimize patient selection and improve surgical decision-making. The purpose of this study was to investigate quantitative CT imaging features as markers for objective assessment of IPMN risk.MethodsThis retrospective study analyzed pancreatic cyst and parenchyma regions extracted from CT scans in 103 patients to predict IPMN risk. Patients who underwent resection between 2005 and 2015 with pathologically proven branch duct (BD)-IPMN and a preoperative CT scan were included in the study. Expert pathologists categorized IPMNs as low or high risk following resection as part of routine clinical care. We extracted new radiographically inspired features as well as standard texture features and designed prediction models for the categorization of high- and low-risk IPMNs. Five clinical variables were also combined with imaging features to design prediction models.ResultsUsing images from 103 patients and tenfold cross-validation technique, the novel radiographically inspired imaging features achieved an area under the receiver operating characteristic curve (AUC) of 0.77, demonstrating their predictive power. The combination of these features with clinical variables obtained the best performance (AUC = 0.81).ConclusionThe present study demonstrates that features extracted from pretreatment CT images can predict the risk of IPMN. Development of a preoperative model to discriminate between low-risk and high-risk IPMN will improve surgical decision-making.© 2018 American Association of Physicists in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.