-
Comparative Study
Improved cardiovascular risk prediction using nonparametric regression and electronic health record data.
- Edward H Kennedy, Wyndy L Wiitala, Rodney A Hayward, and Jeremy B Sussman.
- VA Center for Clinical Management Research, Ann Arbor VA Health Services Research and Development Center of Excellence, University of Michigan, Ann Arbor, MI, USA.
- Med Care. 2013 Mar 1; 51 (3): 251-8.
BackgroundUse of the electronic health record (EHR) is expected to increase rapidly in the near future, yet little research exists on whether analyzing internal EHR data using flexible, adaptive statistical methods could improve clinical risk prediction. Extensive implementation of EHR in the Veterans Health Administration provides an opportunity for exploration.ObjectivesTo compare the performance of various approaches for predicting risk of cerebrovascular and cardiovascular (CCV) death, using traditional risk predictors versus more comprehensive EHR data.Research DesignRetrospective cohort study. We identified all Veterans Health Administration patients without recent CCV events treated at 12 facilities from 2003 to 2007, and predicted risk using the Framingham risk score, logistic regression, generalized additive modeling, and gradient tree boosting.MeasuresThe outcome was CCV-related death within 5 years. We assessed each method's predictive performance with the area under the receiver operating characteristic curve (AUC), the Hosmer-Lemeshow goodness-of-fit test, plots of estimated risk, and reclassification tables, using cross-validation to penalize overfitting.ResultsRegression methods outperformed the Framingham risk score, even with the same predictors (AUC increased from 71% to 73% and calibration also improved). Even better performance was attained in models using additional EHR-derived predictor variables (AUC increased to 78% and net reclassification improvement was as large as 0.29). Nonparametric regression further improved calibration and discrimination compared with logistic regression.ConclusionsDespite the EHR lacking some risk factors and its imperfect data quality, health care systems may be able to substantially improve risk prediction for their patients by using internally developed EHR-derived models and flexible statistical methodology.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.