• J. Neurophysiol. · Jan 1997

    Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba.

    • C Köppl.
    • Institut für Zoologie, Technischen Universität München, Garching, Germany.
    • J. Neurophysiol. 1997 Jan 1; 77 (1): 364-77.

    AbstractSingle-unit recordings were obtained from the brain stem of the barn owl at the level of entrance of the auditory nerve. Auditory nerve and nucleus magnocellularis units were distinguished by physiological criteria, with the use of the response latency to clicks, the spontaneous discharge rate, and the pattern of characteristic frequencies encountered along an electrode track. The response latency to click stimulation decreased in a logarithmic fashion with increasing characteristic frequency for both auditory nerve and nucleus magnocellularis units. The average difference between these populations was 0.4-0.55 ms. The average most sensitive thresholds were approximately 0 dB SPL and varied little between 0.5 and 9 kHz. Frequency-threshold curves showed the simple V shape that is typical for birds, with no indication of a low-frequency tail. Frequency selectivity increased in a gradual, power-law fashion with increasing characteristic frequency. There was no reflection of the unusual and greatly expanded mapping of higher frequencies on the basilar papilla of the owl. This observation is contrary to the equal-distance hypothesis that relates frequency selectivity to the spatial representation in the cochlea. On the basis of spontaneous rates and/or sensitivity there was no evidence for distinct subpopulations of auditory nerve fibers, such as the well-known type I afferent response classes in mammals. On the whole, barn owl auditory nerve physiology conformed entirely to the typical patterns seen in other bird species. The only exception was a remarkably small spread of thresholds at any one frequency, this being only 10-15 dB in individual owls. Average spontaneous rate was 72.2 spikes/s in the auditory nerve and 219.4 spikes/s for nucleus magnocellularis. This large difference, together with the known properties of endbulb-of-Held synapses, suggests a convergence of approximately 2-4 auditory nerve fibers onto one nucleus magnocellularis neuron. Some auditory nerve fibers as well as nucleus magnocellularis units showed a quasiperiodic spontaneous discharge with preferred intervals in the time-interval histogram. This phenomenon was observed at frequencies as high as 4.7 kHz.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.