-
- Gianluca Brugnara, Fabian Isensee, Ulf Neuberger, David Bonekamp, Jens Petersen, Ricarda Diem, Brigitte Wildemann, Sabine Heiland, Wolfgang Wick, Martin Bendszus, Klaus Maier-Hein, and Philipp Kickingereder.
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany.
- Eur Radiol. 2020 Apr 1; 30 (4): 2356-2364.
ObjectivesPatients with multiple sclerosis (MS) regularly undergo MRI for assessment of disease burden. However, interpretation may be time consuming and prone to intra- and interobserver variability. Here, we evaluate the potential of artificial neural networks (ANN) for automated volumetric assessment of MS disease burden and activity on MRI.MethodsA single-institutional dataset with 334 MS patients (334 MRI exams) was used to develop and train an ANN for automated identification and volumetric segmentation of T2/FLAIR-hyperintense and contrast-enhancing (CE) lesions. Independent testing was performed in a single-institutional longitudinal dataset with 82 patients (266 MRI exams). We evaluated lesion detection performance (F1 scores), lesion segmentation agreement (DICE coefficients), and lesion volume agreement (concordance correlation coefficients [CCC]). Independent evaluation was performed on the public ISBI-2015 challenge dataset.ResultsThe F1 score was maximized in the training set at a detection threshold of 7 mm3 for T2/FLAIR lesions and 14 mm3 for CE lesions. In the training set, mean F1 scores were 0.867 for T2/FLAIR lesions and 0.636 for CE lesions, as compared to 0.878 for T2/FLAIR lesions and 0.715 for CE lesions in the test set. Using these thresholds, the ANN yielded mean DICE coefficients of 0.834 and 0.878 for segmentation of T2/FLAIR and CE lesions in the training set (fivefold cross-validation). Corresponding DICE coefficients in the test set were 0.846 for T2/FLAIR lesions and 0.908 for CE lesions, and the CCC was ≥ 0.960 in each dataset.ConclusionsOur results highlight the capability of ANN for quantitative state-of-the-art assessment of volumetric lesion load on MRI and potentially enable a more accurate assessment of disease burden in patients with MS.Key Points• Artificial neural networks (ANN) can accurately detect and segment both T2/FLAIR and contrast-enhancing MS lesions in MRI data. • Performance of the ANN was consistent in a clinically derived dataset, with patients presenting all possible disease stages in MRI scans acquired from standard clinical routine rather than with high-quality research sequences. • Computer-aided evaluation of MS with ANN could streamline both clinical and research procedures in the volumetric assessment of MS disease burden as well as in lesion detection.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.