-
- Yijia Zhang, Hongfei Lin, Zhihao Yang, and Yanpeng Li.
- School of Electronics and Information Engineering, Dalian University of Technology, Dalian, Liaoning, China. zhyj@dlut.edu.cn
- J Biomed Inform. 2011 Dec 1; 44 (6): 1086-92.
AbstractAutomated extraction of protein-protein interactions (PPIs) from biomedical literatures is an important topic of biomedical text mining. In this paper, we propose an approach based on neighborhood hash graph kernel for this task. In contrast to the existing graph kernel-based approaches for PPI extraction, the proposed approach not only has the capability to make use of full dependency graphs to represent the sentence structure but also effectively control the computational complexity. We evaluate the proposed approach on five publicly available PPI corpora and perform detailed comparisons with other approaches. The experimental result shows that our approach is comparable to the state-of-the-art PPI extraction system and much faster than all-path graph kernel approach on all five PPI corpora.Copyright © 2011 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.