• Clin. Exp. Pharmacol. Physiol. · Feb 2014

    Neuroprotective effects of ebselen in traumatic brain injury model: involvement of nitric oxide and p38 mitogen-activated protein kinase signalling pathway.

    • Liang Wei, Yanfei Zhang, Cheng Yang, Qi Wang, Zhongwei Zhuang, and Zhiyang Sun.
    • Department of Neurosurgery, East Hospital, Tongji University School of Medicine, Shanghai, China.
    • Clin. Exp. Pharmacol. Physiol. 2014 Feb 1; 41 (2): 134-8.

    AbstractPrevious investigations have found that ebselen is able to treat neurodegenerative diseases caused by radical and acute total cerebral ischaemia. The aim of the present study was to investigate the neuroprotective effects of ebselen in a traumatic brain injury (TBI) model. Ninety Sprague-Dawley rats were randomly divided into five groups (n = 18 in each): (i) sham operation; (ii) an injury model group; (iii) low-dose (3 mg/kg) ebselen-treated group; (iv) a moderate-dose (10 mg/kg) ebselen-treated group; and (v) a high-dose (30 mg/kg) ebselen-treated group. The TBI model was created according using a modified weight-drop model. Neurological severity score (NSS), brain water content and histopathological deficits were assessed as parameters of injury severity. Expression of nitric oxide (NO), inducible NO synthase (iNOS) mRNA, Toll-like receptor (TLR) and phosphorylated (p-) p38 mitogen-activated protein kinase (MAPK) were examined by chemical colorimetry, quantitative polymerase chain reaction and western blotting 24 h after intragastric ebselen administration. Rats in the TBI model group exhibited markedly more severe neurological injury (higher NSS, more brain water content and more histopathological deficits) than those in the sham-operated group. Ebselen treatment significantly ameliorated the neurological injury of TBI rats in a dose-dependent manner. Moreover, ebselen significantly reduced the NO and iNOS mRNA levels and inhibited TLR4 and p-p38 MAPK expression, indicating the involvement of NO and p38 MAPK signalling pathways in the neuroprotection afforded by ebselen. In conclusion, ebselen ameliorated neurological injury, possibly by reducing NO levels and modulating the TLR4-mediated p38 MAPK signalling pathway. Therefore, ebselen may have potential to treat secondary injuries of TBI.© 2013 Wiley Publishing Asia Pty Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.