• J. Thorac. Cardiovasc. Surg. · Dec 2022

    Protective effects of hydrogen gas against spinal cord ischemia-reperfusion injury.

    • Aya Kimura, Koichi Suehiro, Akira Mukai, Yohei Fujimoto, Tomoharu Funao, Tokuhiro Yamada, and Takashi Mori.
    • Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan.
    • J. Thorac. Cardiovasc. Surg. 2022 Dec 1; 164 (6): e269e283e269-e283.

    ObjectiveThis experimental study aimed to assess the efficacy of hydrogen gas inhalation against spinal cord ischemia-reperfusion injury and reveal its mechanism by measuring glutamate concentration in the ventral horn using an in vivo microdialysis method.MethodsMale Sprague-Dawley rats were divided into the following 6 groups: sham, only spinal ischemia, 3% hydrogen gas (spinal ischemia + 3% hydrogen gas), 2% hydrogen gas (spinal ischemia + 2% hydrogen gas), 1% hydrogen gas (spinal ischemia + 1% hydrogen gas), and hydrogen gas dihydrokainate (spinal ischemia + dihydrokainate [selective inhibitor of glutamate transporter-1] + 3% hydrogen gas). Hydrogen gas inhalation was initiated 10 minutes before the ischemia. For the hydrogen gas dihydrokainate group, glutamate transporter-1 inhibitor was administered 20 minutes before the ischemia. Immunofluorescence was performed to assess the expression of glutamate transporter-1 in the ventral horn.ResultsThe increase in extracellular glutamate induced by spinal ischemia was significantly suppressed by 3% hydrogen gas inhalation (P < .05). This effect was produced in increasing order: 1%, 2%, and 3%. Conversely, the preadministration of glutamate transporter-1 inhibitor diminished the suppression of spinal ischemia-induced glutamate increase observed during the inhalation of 3% hydrogen gas. Immunofluorescence indicated the expression of glutamate transporter-1 in the spinal ischemia group was significantly decreased compared with the sham group, which was attenuated by 3% hydrogen gas inhalation (P < .05).ConclusionsOur study demonstrated hydrogen gas inhalation exhibits a protective and concentration-dependent effect against spinal ischemic injury, and glutamate transporter-1 has an important role in the protective effects against spinal cord injury.Copyright © 2021 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…