• Mathematical biosciences · Oct 2020

    Simulating COVID-19 in a university environment.

    • Philip T Gressman and Jennifer R Peck.
    • Department of Mathematics, University of Pennsylvania, United States of America. Electronic address: gressman@math.upenn.edu.
    • Math Biosci. 2020 Oct 1; 328: 108436.

    AbstractResidential colleges and universities face unique challenges in providing in-person instruction during the COVID-19 pandemic. Administrators are currently faced with decisions about whether to open during the pandemic and what modifications of their normal operations might be necessary to protect students, faculty and staff. There is little information, however, on what measures are likely to be most effective and whether existing interventions could contain the spread of an outbreak on campus. We develop a full-scale stochastic agent-based model to determine whether in-person instruction could safely continue during the pandemic and evaluate the necessity of various interventions. Simulation results indicate that large scale randomized testing, contact-tracing, and quarantining are important components of a successful strategy for containing campus outbreaks. High test specificity is critical for keeping the size of the quarantine population manageable. Moving the largest classes online is also crucial for controlling both the size of outbreaks and the number of students in quarantine. Increased residential exposure can significantly impact the size of an outbreak, but it is likely more important to control non-residential social exposure among students. Finally, necessarily high quarantine rates even in controlled outbreaks imply significant absenteeism, indicating a need to plan for remote instruction of quarantined students.Copyright © 2020 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…