• Magn Reson Med · Jul 2017

    MRI artifact correction using sparse + low-rank decomposition of annihilating filter-based hankel matrix.

    • Kyong Hwan Jin, Ji-Yong Um, Dongwook Lee, Juyoung Lee, Sung-Hong Park, and Jong Chul Ye.
    • Department of Bio and Brain Engineering, Korea Advanced Institute of Science & Technology (KAIST), 373-1 Guseong-Dong Yuseong-Gu, Daejon, 305-701, Republic of Korea.
    • Magn Reson Med. 2017 Jul 1; 78 (1): 327-340.

    PurposeMagnetic resonance imaging (MRI) artifacts are originated from various sources including instability of an magnetic resonance (MR) system, patient motion, inhomogeneities of gradient fields, and so on. Such MRI artifacts are usually considered as irreversible, so additional artifact-free scan or navigator scan is necessary. To overcome these limitations, this article proposes a novel compressed sensing-based approach for removal of various MRI artifacts.TheoryRecently, the annihilating filter based low-rank Hankel matrix approach was proposed. The annihilating filter based low-rank Hankel matrix exploits the duality between the low-rankness of weighted Hankel structured matrix and the sparsity of signal in a transform domain. Because MR artifacts usually appeared as sparse k-space components, the low-rank Hankel matrix from underlying artifact-free k-space data can be exploited to decompose the sparse outliers.MethodsThe sparse + low-rank decomposition framework using Hankel matrix was proposed for removal of MRI artifacts. Alternating direction method of multipliers algorithm was employed for the minimization of associated cost function with the initialized matrices from a factorization-based matrix completion.ResultsExperimental results demonstrated that the proposed algorithm can correct MR artifacts including herringbone (crisscross), motion, and zipper artifacts without image distortion.ConclusionThe proposed method may be a robust correction solution for various MRI artifacts that can be represented as sparse outliers. Magn Reson Med 78:327-340, 2017. © 2016 International Society for Magnetic Resonance in Medicine.© 2016 International Society for Magnetic Resonance in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.