• Plos One · Jan 2020

    Particle removal from air by face masks made from Sterilization Wraps: Effectiveness and Reusability.

    • Sachin Walawalkar, Manish Joshi, Navin Khattry, Balvinder Kaur Sapra, Arshad Khan, Pradeep Kumar Pujari, Lalit Mohan, Sushil Prasad Srivastava, Chital Naresh, Rajendra Badwe, and Sudeep Gupta.
    • Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi- Mumbai, India.
    • Plos One. 2020 Jan 1; 15 (10): e0240398.

    AbstractWearing face masks is highly recommended to prevent SARS-CoV-2 transmission in health care workers and for the general public. The demand for high quality face masks has seen an upsurge in the recent times, leading to exploration of alternative economic and easily available options, without compromising on the quality. Particle removal from air in terms of capture efficiency of the filter media or the face mask is a crucial parameter for testing and quality assurance. Short-term reusability of the face masks is also an important aspect as the demand for masks will potentially outstrip the supply in future. Sterilization Wraps, which are used to wrap sterile surgical instruments, have shown a promising performance in terms of removal of particles from air. In this study, we evaluate the particle filtration characteristics of face masks made of 2 different metric weights [45 and 60 gram per square metre (GSM)] respectively, using locally available Sterilization Wraps. The aerosol filtration characteristics were also studied after sterilisation by different techniques such as heat with 50% humidity (thermal treatment), ethylene oxide (ETO), steam and radiation dose of 30kGy. We found that 60 GSM face mask had particle capture efficiency of 94% for total particles greater than 0.3 microns and this capture efficiency was maintained even after sterilisation with ETO and thermal treatment. The cost of producing these masks was 30 US cents/mask at our institute. Our study suggests that sterilization wrap material made of non-woven polypropylene spunbond-meltblown-spunbond (SMS) fibres could be an appropriate readily available inexpensive material for making face masks or N95 respirators.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.