-
- Ahmad Abujaber, Adam Fadlalla, Diala Gammoh, Husham Abdelrahman, Monira Mollazehi, and Ayman El-Menyar.
- Assistant Executive Director of Nursing, Hamad medical corporation, Doha, Qatar.
- Plos One. 2020 Jan 1; 15 (7): e0235231.
ObjectivesWe aimed to build a machine learning predictive model to predict the risk of prolonged mechanical ventilation (PMV) for patients with Traumatic Brain Injury (TBI).MethodsThis study included TBI patients who were hospitalized in a level 1 trauma center between January 2014 and February 2019. Data were analyzed for all adult patients who received mechanical ventilation following TBI with abbreviated injury severity (AIS) score for the head region of ≥ 3. This study designed three sets of machine learning models: set A defined PMV to be greater than 7 days, set B (PMV > 10 days) and set C (PMV >14 days) to determine the optimal model for deployment. Patients' demographics, injury characteristics and CT findings were used as predictors. Logistic regression (LR), Artificial neural networks (ANN) Support vector machines (SVM), Random Forest (RF) and C.5 Decision Tree (C.5 DT) were used to predict the PMV.ResultsThe number of eligible patients that were included in the study were 674, 643 and 622 patients in sets A, B and C respectively. In set A, LR achieved the optimal performance with accuracy 0.75 and Area under the curve (AUC) 0.83. SVM achieved the optimal performance among other models in sets B with accuracy/AUC of 0.79/0.84 respectively. ANNs achieved the optimal performance in set C with accuracy/AUC of 0.76/0.72 respectively. Machine learning models in set B demonstrated more stable performance with higher prediction success and discrimination power.ConclusionThis study not only provides evidence that machine learning methods outperform the traditional multivariate analytical methods, but also provides a perspective to reach a consensual definition of PMV.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.